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Abstract

This paper describes implementation of a technique

used to obtain a high fidelity fluid-thermal-structural

solution of a combined cycle engine at its scram design

point. Single-discipline simulations are insufficient

here since interactions from other disciplines are

significant. Using off-the-shelf, validated solvers for

the fluid, chemistry, thermal, and structural solutions,

this approach couples together their results to obtain

consistent solutions.

Introduction

To reduce the cost of access to space, NASA has

focused on several propulsion concepts. In one longer-

term view, the ISTAR program is examining the

Rocket Based Combined Cycle [1,2,3] (RBCC)

concept that integrates a rocket and a ram/scram jet. In

particular, the low speed and ex-atmospheric

advantages of rocket propulsion axe combined with the

higher specific impulse of air breathing propulsion to

obtain a more efficient propulsion system. A concept

design analyzed here is a strutjet engine that alternates

rocket containing struts with combustor ducts as

indicated in Figure 1.

Particularly with high fidelity analysis, a common

design practice is to neglect some multidisciplinary

interactions. While this practice is adequate in many

instances, a successful RBCC design is a careful

balance between aerodynamics, combustion, thermal

management, structural and weight requirements.

Consistent multidisciplinary solutions should capture

these interactions, identify their consequences, and

consequently play a role in design.

The techniques implemented here apply not only to

RBCC designs but to a range of problems where

multidisciplinary interactions are significant. In

particular, these techniques may be readily applied to

TBCC designs. A long term goal of this work is

developing a toolkit that simplifies the

multidisciplinary coupling of off-the-shelf codes.

The following sections present the three component

simulations, details of the coupling of these simula-

tions, important coupling issues, results, and a discus-

sion of the added cost of multidisciplinary analysis.

Component Simulations

The present work involves three steady, three-

dimensional simulations for ISTAR engine

components: a fluid simulation of the approach flow

over the vehicle forebody and engine duct inlet, a

fluid-chemistry simulation for the combustor, and a

thermal-structural simulation of the engine walls.

Vehicle Forebodv and Engine Inlet:

The hypersonic approach flow over the vehicle

forebody and into the engine inlet is calculated at the

scram design point with the Navier-Stokes code,

OVERFLOW [4]. A _:-o_ turbulence model is used with

boundary layer grid resolution of y+-I (at the first

node off the wall) [4,5]. OVERFLOW modifications

allow simulation of equilibrium chemistry air. All

vehicle surfaces that can influence the engine inlet

airflow are included in a Chimera (overlapping)
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Figure1:ISTARVehicleconceptandStrutjetEngine[1](sideandfrontviews)

Figure2: ApproachflowMachcontoursalongthesymmetrysurfacesof thevehicleforebodyandoneenginestrut-to-strut
flowpath.

structuredgrid system(5 blocks; 9×105 cells)
generatedwith GRIDGEN[6]. Here,Chimeragrids
simplify complexgeometrygrid generation,and
accommodatesomedesignchanges. Interpolation
quantitiesfor thisChimeragridsystemarecalculated
withPEGASUS[7]. Centerlinesymmetryis assumed
for boththevehicleandthesinglestrut-to-strutflow
path simulated. Wall temperaturesmust be
specified--initiallyaguessandonsubsequentcycles
temperaturesaxeinterpolatedfromthesolid'sthermal-
structuralmodel.Theforebody/inletconfigurationand
anapproachflowsolutionaxeshowninFigure2.

Combustor Fluid-Chemistry Analysis:

Scram combustion within the engine is simulated using

the Navier-Stokes plus finite rate chemistry code,

VULCAN [8]. A _:-_0 turbulence model with wall-

functions is used with grid resolution of the boundary

+ <layer to y max 500. Radiation effects are not included.

The combustor inflow is supersonic and calculated

from the approach solution by interpolating solution

quantities between grids.

Within the engine, the cascade fuel injectors are mod-

eled as single triangular slots with area, mass flow, and

momentum equal to the actual injectors. Combustion is

simulated with a 6-species, 3-step finite-rate Ethylene

model. Although it was not part of the preliminary

CAD model, a flame holding cavity was added to

facilitate and sustain combustion. Wall temperatures

must be specified--the initial value is a guess, and on

subsequent cycles temperatures axe interpolated from

the thermal model. The grid contains five composite

(non-overlapping) blocks (1.9x105 cells), and

centerline symmetry is assumed. A typical combustor

configuration and a solution axe shown in Figure 3.
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Figure3: Combustorductcutawayshowingfuelmassfractioniso-surfacescoloredbytemperature.Centerlinesymmetryis
assumed.

Engine Strut Thermal and Structural Analyses:

Both the thermal and structural simulations are

performed individually using ANSYS [9], a

commercially available finite element solver. From

engine geometry CAD files, a three-dimensional,

unstructured, tetrahedral thermal-structural mesh was

created within ANSYS (1.3x105 nodes, 8.6×104

tetrahedra); shell elements, although simpler, cannot

capture the normal heat conduction that is of interest

here. Centerline symmetry was assumed.

Temperature-dependent material properties for Inconel

625 and Titanium 1321S axe taken from manufacturer's

specifications [10,11]. A thermal barrier coating on the

engine strut surface is modeled with homogenized

material properties. Coolant passages are modeled by

dividing the geometry into two-layers at coolant

surfaces; the coolant temperature is applied at this

bilayer surface (Figure 4). This model neglects details

of heat conduction around each coolant passage.

Surface heat fluxes and pressures axe calculated

from the fluid solutions, interpolated onto this thermal-

Figure 4: Coolant Passages (left) are modeled with a bilayer
material (right); the coolant temperature is applied on the
intermediate surface.

structural model, and used as boundary conditions in

each ANSYS analysis. The coolant temperature

boundary condition is specified in the thermal analysis

as either a fixed temperature, or as a temperature

distribution calculated after integrating the heat flux

along each coolant channel. After the thermal analysis

of this model, the resulting wall temperatures are

interpolated onto the surfaces of the fluid grids and

used as boundary conditions in the fluid calculations.

Similarly, surface deflections from the structural

analysis can be interpolated and used to deform the

fluid grids. A typical thermal solution is shown in

Figure 5, and a typical structural solution is shown in

Figure 6.

NASA/TM--2002-211971 3



Figure 5: Engine strut thermal model showing temperature contours for scram combustion. The five fuel-injectors are the small,

dark triangular regions.

Figure 6: Engine strut structural model showing deflection contours at flae scram design point. Deflections are exaggerated.
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Coupling Procedures

The objective of coupling these three simulations
together is to ensure a consistent solution for the
engine: flow quantities are the same where the fluid

codes meet, heat fluxes and temperatures axe the same
where fluid and thermal codes meet, and the deflected
walls axe the same as the fluid boundaries. Three

coupling procedures axe necessary here; between the
inlet and combustor calculations there is a fluid-fluid

coupling, and between the flowpath and the solid walls
both a fluid-thermal and a fluid-structural coupling
exist.

Fluid-Fluid Coupling

The inlet (OVERFLOW) and combustor (VULCAN)
fluid calculations overlap near the throat, and coupling

ensures that flow quantities are consistent there. Since
the flow is supersonic and boundary layers are

attached, the downstream influence is assumed to be
negligible; outflow values of inlet solution variables

axe interpolated onto the combustor grid.

There are three interpolation challenges in this

coupling. First, different codes may use different flow
or turbulence variables, nondimensionalizations,

and/or units; transformation of variables may be

necessary. Here, _:-03turbulence models were chosen
in both calculations. However, for a faster turnaround
time, wall-functions were chosen in VULCAN;

OVERFLOW has only a low-Reynolds number
(integration to wall) turbulence model. Second, the

interpolation of 03 was complicated by its singular
behavior in boundary layers. Interpolation of the

turbulent viscosity, 9_03, was better behaved. Third,

interpolation in the highly resolved boundary layer
meshes near curved walls can be difficult. In Figure 7,
discretely sampled points on one mesh (dashed line)

can lie outside the other mesh (solid line);
interpolation is not possible, and extrapolation from
nearest neighbors is required.

Figure 7: Interpolation between two discrete grids (solid and
dashed lines) fails at point A on a curved boundary (dotted
line). Extrapolation from nearest neighbors is required.

Fluid-Thermal Coupling
The correct thermal boundary condition is continuous

heat fluxes and temperatures at the interface between
fluid and thermal codes; however, calculating heat

fluxes from a fluid solution and applying them in a
thermal calculation, will not satisfy this condition, in
general.

To obtain consistent thermal solutions, the current

approach is to iterate between the fluid and thermal
solvers [12,13,14]. Starting with a guess temperature
for the fluid-solid interface, a fluid solution is

obtained, interface heat fluxes are calculated and
imposed on the thermal solver. The resulting thermal

solution revises the interface temperature. This cycle
continues to convergence, and in practical problems,

this procedure converges within 10 iterations [12].

There are three challenges in this coupling. First, the

convergence of this procedure is sensitive to several
factors including material properties and the initial

guess wall temperature. Some work has not required
under-relaxation for convergence [12], while other

researchers have used it [14,15]. In the current work,
interface temperatures oscillated during the fluid-
thermal iteration both for VULCAN and

OVERFLOW. Under-relaxation (w=0.25-0.5) of the

interface temperatures calculated by ANSYS allowed
convergence. The appendix presents a theoretical

analysis that predicts oscillations, sensitivity to the
material thermal conductivities, and the need for

under-relaxation to improve convergence.
Convergence was also improved by using VULCAN's
thermally mixed boundary condition to generate the

initial guess temperature distribution. This boundary
condition couples heat fluxes at the wall with a one-

dimensional solid wall heat conduction analysis [15].

Second, the calculation of accurate heat fluxes is

challenging [13] for OVERFLOW. The heat flux
calculation involves a difference of flow variables

(which decreases the order-of-accuracy) performed in
the highly refined boundary layer grid. Any lack of

smoothness in the grid contributes to noisy fluxes; the
grid singular line in the rounded strut corner is a
source of noise.

Third, the turbulence model has an influence on the
wall heat fluxes. VULCAN uses wall-functions and a

coarser boundary layer grid resolution. Here, the heat

flux is calculated from a functional representation of

NASA/TM--2002-211971 5



theboundarylayerprofile.Inpractice,VULCANheat
fluxesarelessnoisy.However,adebateexistsabout
therelativeaccuracyof heatfluxescalculatedfrom
wall-functionand low-Reynoldsnumberturbulence
models. Evenin ageometricallysimpletestproblem
(Mach3flowacrossaconstanttemperatureflatplate),
heat flux predictions from VULCAN and
OVERFLOWdifferby 11to 15percent.Further,in
the engineductwherethe convergedOVERFLOW
andVULCANfluid-thermalsimulationsoverlap,the
heatfluxeshavedisparatevalues.

Second,deformingfluid gridsbecomesdifficult as
deformations--particularlyshear(tangentto wall)
deformations--exceedthe grid spacing. Since
VULCANuseswall functions,wallspacingis coarse
andgriddeformationisstraightforward.OVERFLOW
gridshavefiner wall spacingandmustalsobe of
sufficient quality for CHIMERA/PEGSUS
interpolation. Thesetwo constraintspresenta
challenge.

Results

Fluid-Structural Coupling

Like the fluid-thermal coupling, the correct fluid-
structural interface condition is consistent pressures
and deflections between fluid and structural codes.

The common practice of neglecting surface deflections

in the fluid simulations does not satisfy this condition,
in general.

To find consistent structural solutions, pressures from
the converged fluid-thermal simulations axe

interpolated onto the fluid-solid interface of the
structural grid; these pressures axe boundary

conditions in the structural analysis. From the thermal
analysis, the temperature distribution in the solid is
used in the structural analysis. Deflections calculated

in the structural analysis are interpolated back to the
fluid grids and used to deform these grids. This cycle

is continued to convergence.

There axe two interpolation challenges in this

coupling. First, the engine ramp and engine strut
deflect independently, since they are not attached

(Figure 8). Deformations axe discontinuous across the
wall-ramp gap, and the interpolation procedure must

not confuse points on different components.
Consequently, when searching for an interpolation
stencil, a restriction is required: interpolation must be

to the same engine component.

Grid

Figure 8: The engine ramp and strut deflect independently;
interpolation must be to the same engine component.

Fluid--including combustion--(Figures 2, 3), thermal

(Figure 5), and structural solutions (Figure 6) have
been obtained for this ISTAR engine configuration at

its scram design point. The fluid and thermal solutions
have been converged so that temperatures and heat
fluxes axe consistent at the fluid-solid interface. The
fluid and structural simulations have been iterated

through one cycle.

The fluid-thermal iteration substantially changes the

engine strut wall temperatures. The initial, uniform,
wall temperature of the strut was taken to be 1560 °R

for both OVERFLOW and VULCAN. The L2 norm,
(Z (AT)2/N) 1/2,of the temperature change, AT, between

the initial and converged temperatures was 500 °R.
The heat fluxes calculated before and after the fluid-

thermal convergence are substantially different. As
expected the qualitative details of the duct flow

changed slightly.

These computational results reveal quantitative details
of inlet performance, engine combustion, heat transfer-
thermal management, and structural deflections and

stresses. If these analyses were performed
concurrently with the early design process, these

results would have been valuable. These techniques
compliment cycle analyses, and one- and two-
dimensional computations, and help understand wind

tunnel data and flight engine design. Also, these
results can provide insights into design trade-offs. As

with any CFD calculation, one must consider the
limitations of the numerical methods, computational

grid, and physical models.

The Cost of Multidisciplinary Analysis

The manual effort to setup and perfect single

discipline simulations is substantial--on the order of

months. This effort is dominated by the manual effort
of structured, fluid grid generation. However, it is

NASA/TM--2002-211971 6



importanttodistinguishtheaddedcostof performinga
multidisciplinary analysis--with these single
disciplinesimulationsin hand. This cost canbe
broken into two components:the additional
computationtime,andthesetuptimefor theiterative
coupling. While computationtime approximately
doubles,theincreasein setuptimeishardto quantify
andmaybereducedbyacouplingtoolkit.

Estimating the added computation time for a

multidisciplinary simulation is also complicated by the
disparate execution times of the component solvers.
The thermal-structural model and interpolation require

only minutes; while the fluid-combustion models
require on the order of tens of hours. Some

improvements may be possible. More aggressive
parallel execution of the fluid solvers may reduce

turnaround time. Further, in this preliminary work the
fluid codes were completely converged within each
fluid-thermal iteration; with such disparate time scales,

this restriction may waste computational resources,
especially in the initial iterations when large changes
occur on the boundaries.

Setting up these multidisciplinary couplings involves
working with file formats to output and input solution
variables; transforming variables to correct for

different units, nondimensionalizations, and even
different solution variables; massaging files to identify

and format interpolation surfaces; interpolating these

variables between grids; and carefully overseeing the

entire process. A goal of this work is automating these
steps, where possible, and creating a general toolkit for

coupling off-the-shelf simulation codes.

Implementation of this coupling procedure has
revealed obstacles to achieving this goal. First,
interpolation is challenging particularly in boundary

layer meshes, at boundaries, and where components
meet. Second, variable transformations axe often

unavoidable; different codes use different units and
nondimensionalization of solution variables, (i.e.
different turbulence models). Third, the calculation of

heat fluxes is problematic. Fourth, when shear
deformations are larger than grid spacing, deforming

grids can be challenging.

Summary

This paper describes a procedure for obtaining
consistent fluid-thermal-structural solutions. The

procedure is intended to handle off-the-shelf, single-

discipline solvers with limited or no access to solver
source code. The procedure is used to analyze the

scram design point of an air-breathing combined cycle
engine. It is envisioned that the consistent
multidisciplinary solution given by this procedure can

aid in the engine's design, and be used for
optimization of the design across all three disciplines.
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Appendix

Numerical experiments and theoretical analysis

indicate that under-relaxation may be needed for

convergence of the fluid-thermal iteration. Some

researchers have used under-relaxation [14,15], while

other work has not required it [12]. The following

theoretical analysis provides guidance for converging
fluid and thermal solutions to a consistent solution.

procedure and the transfer of heat fluxes and

temperatures during a fluid-thermal iteration. The
i

equation variable, _, is the difference between the

consistent interface temperature, T_, and the calculated
value after i iterations.

il
I_ i = -- O_ I_ , where c_ = (kALB/kBLA) > 0

For the simple geometry of Figure A, the analysis

derives a single equation that reflects both the solution
This result predicts that the iterated temperatures

oscillate about the converged value, which we have

observed. Further it predicts convergence is stable for

c_ < 1, which corresponds to high thermal conductivity

for the solid in the fluid-thermal iteration. Again this
result has been observed.

TA TB

If we model the analogue of under-relaxing the

interface temperatures calculated by ANSYS

(parameter 0 < w < 1), the equation becomes

I_i = [ 1 -w( 1 +a)] I_ il

Figure A: The bilayer solid contains materials A and B, with
constant thermal conductivities ka and kB, and thickness LA

and LB. The exterior surfaces are kept at constant
temperatures TA and TB, defining a one-dimensional

problem. The temperature, TI, at the interface between A
and B, is found with the same procedure as in the fluid-
thermal iteration. Clearly, the problem of interest is a fluid-
solid and not a solid-solid interface.

This result predicts that sufficient under-relaxation of

the iterated interface temperatures will always yield

convergence. In the fluid-thermal iteration, under-

relaxation values, w, of 0.5 and 0.25 were necessary to

converge the VULCAN-ANSYS and OVERFLOW-

ANSYS iterations, respectively.
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